Infinitesimal Blaschke conjectures on projective spaces
نویسندگان
چکیده
منابع مشابه
The Geometric Interpretation of Fröberg-iarrobino Conjectures on Infinitesimal Neighbourhoods of Points in Projective Space
The study of infinitesimal deformations of a variety embedded in projective space requires, at ground level, that of deformation of a collection of points, as specified by a zero-dimensional scheme. Further, basic problems in infinitesimal interpolation correspond directly to the analysis of such schemes. An optimal Hilbert function of a collection of infinitesimal neighbourhoods of points in p...
متن کاملBlaschke Sets for Bergman Spaces
where dist denotes the Euclidean distance. Note that for Lipα(D) and A∞ the zero sequences Z are characterized by (1) and (2), with S replaced by Z. 3. The Blaschke sets S for the class D of analytic functions with finite Dirichlet integral are characterized by (2) (see [B]). Note that D-zero sequences cannot be described this way because there are f ∈ D whose zeros come arbitrarily close to ev...
متن کاملField Theory on Infinitesimal-Lattice Spaces
Equivalence in physics is discussed on the basis of experimental data accompanied by experimental errors. It is pointed out that the introduction of the equivalence being consistent with the mathematical definition is possible only in theories constructed on non-standard number spaces by taking the experimental errors as infinitesimal numbers. Following the idea for the equivalence, a new descr...
متن کاملon projective spaces
We prove that a one-dimensional foliation with generic singularities on a projective space, exhibiting a Lie group transverse structure in the complement of some codimension one algebraic subset is logarithmic, i.e., it is the intersection of codimension one foliations given by closed one-forms with simple poles. If there is only one singularity in a suitable affine space, then the foliation is...
متن کاملGeodesics on Weighted Projective Spaces
We study the inverse spectral problem for weighted projective spaces using wave-trace methods. We show that in many cases one can “hear” the weights of a weighted projective space.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales scientifiques de l'École normale supérieure
سال: 1981
ISSN: 0012-9593,1873-2151
DOI: 10.24033/asens.1409